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In this paper the vertical stacks of semiconductor quantum dots (QDs) without dislocations, incorporated in the other 
semiconductor substrate, for the epitaxial growth in the crystal direction (001) were considered. Analytical expressions for 
the strain in the both semiconductors were derived for the case when the thicknesses of QDs and the substrate spacers are 
small enough in comparision with the stack lateral dimensions. In the particular case when the stack consists of InAs QDs in 
the GaAs substrate, the obtained results were calculated and shown graphically. 
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1. Introduction 
 

It was proven many times during the past twenty years 

that the vertical alignment of the semiconductor QDs into 

the vertical stacks, is technologically possible [1-4]. This 

kind of nanostructures could be appropriate for the 

applications in the semiconductor laser technology [5,6], 

and for the solar cells fabrication [4]. 

Until now, there is no published scientific paper about 

the analytical strain evaluation inside QD stacks. Some of 

the published papers have discussed results obtained by 

the numerical methods for the stacks consisted of several 

QDs [7,8]. 

In this paper we have generally analised the vertical 

stacks of the thin cylindrical QDs made of the 

semiconductor 2, incorporated in the semiconductor 1 

substrate. Basic assumptions were: (1) Thicknesses of QDs 

and spacers much less than the stack lateral dimensions; 

(2) Coherent crystal growth providing the nanostructure 

without defects; (3) Both semiconductors with cubic 

diamond or zinc blende structure; (4) Flat QDs with 

constant thickness (see Fig. 1), except probably on its 

lateral edges near the stack side; (5) Arbitrary shape of the 

horizontal intersection of the stacks. 

Because of the assumption (1), the space volume of 

the stack and surrounding substrate (where the strain 

varies from its values inside the stack to the zero values in 

the substrate) is in the very narrow vicinity of the stack 

side being very small in comparison with the stack 

volume, and hence its influence could be neglected. 

Accordingly, there is approximately constant strain inside 

the QDs, and also another constant strain inside the dots 

spacers.  

 

2. Analytical evaluation 
 

We have chosen coordinate system 0xyz with the z-

axis in the crystal direction (001), while the x-axis and the 

y-axis are in the (100) and (010) crystal directions 

respectively (see Fig. 1).  

Because of the cubic crystal symmetry, for such 

coordinate system 0xyz there would be  
 

yyxx       

0 zxyzxy     (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Semiconductor 2 quantum dot stack in the semiconductor 

1 substrate. There is large number of QDs in the stack 
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Let us designate the transverse strain components as 

yyxxp    and longitudinal strain component as 

zzn   . Also, let a1 and a2 be the unstrained lattice 

constants of the semiconductors 1 and 2, and a1 and a2 

their strained values in the xy-plane inside the stack. 

Because of the coherent crystal growth assumption there 

would be a1 = a2 = a. Accordingly, one gets 
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where p1  and p2  are the transverse strain components in 

the semiconductors 1 and 2. 

Let n1 and n2 be the numbers of monolayers of the 

semiconductors 1 and 2 in the stack period, d1 and d2 the 

thicknesses of the unstrained monolayers of the 

semiconductors 1 and 2, and d1 and d2 their strained 

values. From the coherent growth assumption, it must be 

the same number of the molecular monolayers in the stack 

period and the corresponding unstrained surrounding 

substrate, so it should be: 
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and similarly  
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After inserting these expressions into eq. (3) one obtains 
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Because of the same crystal structure, all corresponding 

geometric parameters of the semiconductors 1 and 2 are 

proportional, so it would be 
1

2

1
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d
 . Accordingly, from 

eq. (5) one gets  
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The elastic energy density of the cubic crystal is 

[9,10]: 
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where Cij are the elastic stiffnesses of that cubic crystal. 

Because of eq. (1) the single period of the stack has an 

elastic energy 
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where w1 and w2 are the elastic energy densities in the 

semiconductors 1 and 2, and V1 and V2 are the volumes 

of single QD and single spacer. According to the principle 

of minimum energy, the strain values inside the stack 

could be found from the equations for the minimum of 

E  in subject to eq. (4): 
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where  is some constant and 
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After inserting eqs. (4) and (7) into eq. (8), and calculating 

derivatives, one obtains in the first order approximation: 
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with assumption that n)2;1(  and p)2;1(  are small, so the 

second order terms could be neglected. After eliminating  

from the above equations one gets the following system of 

linear equations, in combination with eq. (6): 
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From the system of eqs (9), one can obtain longitudi-

nal strain components n)2;1(  and a : 
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where Di and D are the corresponding determinants of this 

system of equations. Then transverse strain components 

p)2;1(  can be obtained from eqs. (2). 

 

 

3. Practical demonstration 
 

In this section we will apply the obtained theoretical 

results for the case when the stack consists of the InAs 

QDs incorporated in the GaAs substrate. 

Parameters for InAs and GaAs are given in Table 1 

[11]. 

 

 
Table 1. InAs, GaAs: Lattice constants and stiffnesses 

 

 Lattice 

constant: 

C11 

(10
10

Pa) 

C12 

(10
10

Pa) 

C44 

(10
10

Pa) 

GaAs 5.6533 Å 11.88 5.38 5.94 

InAs 6.0583 Å 8.329 4.526 3.959 

 

 

After inserting these parameters in the system of eqs. 

(9), and solving the system one gets: 
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while strains p)2;1(  can be calculated according to eqs. 

(2): 
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Using eqs. (10) and (11) strain graphs are plotted in Figs. 2 

and 3. 

 

 

 
 

 

 
 

Fig. 2. Transverse and longitudinal strains in the GaAs 

spacers. The transverse strain in the spacer is always 

positive and varies in the interval %69.90 1  p , 

while the longitudinal strain in the GaAs spacer is 

always     negative    and     varies      in     the     interval  

                         0%67.11 1  n . 

 

 

It is well known how the mechanical strain affects the 

electronic and optical properties of the semiconductor 

[12]. Pretty large obtained strain variation in QDs could 

moderately affect their electronic and optical properties. 

The mechanical strain varies smoothly with ratio  

between the number of monolayers in QDs and number of 

monolayers in the stack period, so the electronic and 

optical properties of this nanostructure could be precisely 

controlled by changing the value of . 
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Fig. 3. Transverse and longitudinal strains in InAs QDs. 

The QDs transverse strain p2  varies in the interval 

%35.2%68.6 2  p  and changes sign from 

negative to positive for 778.0 , while the QDs 

longitudinal strain n2  varies in the interval 

%27.7%68.6 1  n  and changes sign from positive  

                      to negative for 448.0 . 

 

 

4. Conclusions 
 

In this paper we have derived the approximate 

analytical expressions for the strain inside the QDs stack. 

The stack of semiconductor 2 cylindrical QDs was 

adopted, separated by the semiconductor 1 substrate 

spacers, for the most common (001) direction of the 

crystal growth. The same cubic crystal stucture was 

supposed for both semiconductors. These expressions 

were derived from the boundary conditions between QDs 

and the substrate. First boundary conditions were chosen 

for the cross section plane of the stack, while the second 

boundary conditions were chosen for the stack side. Basic 

assumption was the crystal growth without dislocations. 

The obtained results were applied in the case of the 

InAs QDs and the GaAs substrate. All strains have been 

calculated and graphically presented in respect to the ratio 

  between the number of monolayers in QDs and number 

of monolayers in the stack period. Both cross-section 

transverse strain and stack axis longitudinal strain in QDs 

change sign with changing . For thinner QDs biaxial 

cross-section stress dominates, e.g. QDs compress in their 

cross sections and stretch in the axial direction. For thicker 

QDs, the uniaxial stack side stress dominates, e.g. QDs 

stretch in their cross sections and compress in the axial 

direction. 

The QDs transverse strain varies with  in the interval 

%35.2%68.6 2  p , while the axial strain varies in the 

interval %27.7%68.6 1  n . Such a large strain values, 

which result from the lattice constants mismatch, could not 

be practically reached by means of the external forces, 

because they far exceed the cracking value. 

Due to the strain variation inside QDs in the stack, 

their electronic and optical properties could be precisely 

controlled by the ratio . 
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